一、復(fù)雜的電子環(huán)境
汽車、工業(yè)和航空電子設(shè)備所處的供電環(huán)境非常復(fù)雜,在這種惡劣的供電環(huán)境中運行,需要具備對抗各種浪涌傷害的能力。以汽車電子系統(tǒng)供電應(yīng)用為例,該系統(tǒng)不但需要滿足高可靠性要求,還需要應(yīng)對相對不太穩(wěn)定的電池電壓,具有一定挑戰(zhàn)性;與車輛電池連接的電子和機械系統(tǒng)的差異性,也可能導(dǎo)致標稱12 V電源出現(xiàn)大幅電壓偏移。
事實上,在一定時間段內(nèi),12 V電源的變化范圍為–14 V至+35 V,且可能出現(xiàn)+150 V至–220 V的電壓峰值。這種很高的瞬態(tài)電壓在汽車和工業(yè)系統(tǒng)是常見的,可以持久從微秒到幾百毫秒,這將帶來巨大的能量。這其中有些浪涌和瞬變在日常使用中出現(xiàn),其他則是因為故障或人為錯誤導(dǎo)致。
無論起因為何,它們對汽車電子系統(tǒng)造成的損害難以診斷,修復(fù)成本也很高昂。為避免出現(xiàn)故障風險,系統(tǒng)內(nèi)的電子器件,要么本身必須具備承受這些浪涌的能力,要么就必須被謹慎得保護起來。
圖1 工業(yè)現(xiàn)場常見的浪涌形式
二、傳統(tǒng)的應(yīng)對方式
傳統(tǒng)的過電壓(OV)和過流(OC)保護系統(tǒng)往往包括:用于過濾低能量尖峰的電容器和電感、用于過電壓保護的瞬態(tài)電壓抑制器(TVS)、用于直流過流保護的保險絲、用于電池反向保護的系列二極管等。
圖2 傳統(tǒng)保護架構(gòu)
盡管這些器件也在不斷改進,但這些分立的解決方案體積龐大、不夠精密,并且在持續(xù)故障期間會燒斷保險絲,可能引起以下這些更大范圍的停機和故障:
(1)吸收同樣的能量,分立器件需要更大的體積。
(2)參數(shù)離散,例如同樣是SMB封裝的78V TVS,其齊納擊穿電壓的范圍可達1V。
(3)持續(xù)或直流的瞬變,可能會燒斷保險絲或TVS,需要人工維修。
(4)用于反向保護而串聯(lián)在功率通路上的二極管,會增加損耗并且?guī)頍岬膯栴}。
三、ADI的革新技術(shù)——SURGE STOPPER
技術(shù)型授權(quán)代理商Excelpoint世健的工程師Alex Yang介紹了ADI的革新技術(shù)——SURGE STOPPER,SURGE STOPPER能夠?qū)崿F(xiàn)怎樣的功能呢?
圖3 浪涌抑制器在汽車中的應(yīng)用
其功能的核心,就是能夠保護負載端的電子系統(tǒng)免受高壓沖擊。并且在電涌施加在系統(tǒng)前端時,能夠確保系統(tǒng)不間斷運行。當系統(tǒng)的前端供電出現(xiàn)持續(xù)的或是直流故障時,能夠斷開負載連接,直至前端供電重新正常,保護系統(tǒng)自動恢復(fù)供電。另一方面,假如后級出現(xiàn)故障,例如過載和短路,那么SURGE STOPPER也同樣可以保護前端供電不會被故障的負載所拖垮,可以干凈利落地切斷故障通道直至其恢復(fù)正常。
在實現(xiàn)核心功能的基礎(chǔ)上,SURGE STOPPER在設(shè)計中考慮了很多細節(jié)。例如,工程師可以對嵌位電壓進行高精度的微調(diào),而不需要被動地去TVS選型表中選出最接近自己需求的器件。這樣既便于工程師設(shè)計的更改和迭代,也可以最大限度地減少過度設(shè)計,降低成本。
根據(jù)市場需求,ADI革新性地針對浪涌問題研發(fā)了三類產(chǎn)品,包括:線性浪涌抑制器,開關(guān)浪涌抑制器,以及防護控制器。除此之外,ADI仍在不斷嘗試用新的思路解決浪涌問題。
線性浪涌抑制器
在正常運行期間,一個線性浪涌抑制器完全打開MOSFET的溝道,為負載電流提供一個低電阻路徑。
當輸入電源電壓出現(xiàn)波動時,輸出電壓會被線性地調(diào)節(jié)到一個由電阻分壓器設(shè)置的安全電壓,從而實現(xiàn)保護后級負載電路的目的。
在保護狀態(tài)下,后級電路會保持工作狀態(tài)。
圖4 線性浪涌抑制器
開關(guān)浪涌抑制器
在正常運行期間,開關(guān)浪涌抑制器完全打開外部MOSFET,讓功率順利通過保護級,從而為后級負載供電。
當輸入電壓浪涌發(fā)生時,立刻切換工作模式,將外部MOSFET作為一個高效率的BUCK穩(wěn)壓器的一部分,通過限制輸出電壓和電流來保護關(guān)鍵的下游組件。
在保護狀態(tài)下,后級電路會保持工作狀態(tài)。
圖5 開關(guān)浪涌抑制器
保護控制器
保護控制器在供電電壓出現(xiàn)異常時立即斷開連接,從而達到保護后級電路的目的。
在保護狀態(tài)下,后級電路會停止工作。
以LTC4368為例,它可以實現(xiàn)過壓(OV)、欠壓(UV)、過流(OC)、反向輸入(RI)四種保護,基本覆蓋了應(yīng)用現(xiàn)場會出現(xiàn)的各種工況,為后級電路提供了完善的保護解決方案。
圖6 LTC4368框圖
四、產(chǎn)品舉例
Alex分享了ADI的一款線性浪涌抑制器LT4363。
圖7 LT4363的電路架構(gòu)
LT4363簡介
它能通過控制一個外部N溝道MOSFET的柵極,以在過壓過程中(比如:汽車應(yīng)用中的負載突降情況)調(diào)節(jié)輸出電壓。輸出被限制在一個安全的數(shù)值上,從而允許負載持續(xù)運作。
LT4363還監(jiān)視SNS和OUT引腳之間的壓降,以防止遭受過流故障的影響。
不管在哪種故障條件下,定時器的起動均與 MOSFET 應(yīng)力成反比。在定時器終止操作之前,F(xiàn)LT 引腳將被拉至低電平,以發(fā)出“即將斷電”的警告。如果該條件一直持續(xù),則 MOSFET 將關(guān)斷。在復(fù)位之前,LT4363-1 保持關(guān)斷,而LT4363-2則在一個冷卻周期之后重新起動。
兩個高精度比較器能監(jiān)視輸入電源的過壓(OV)和欠壓(UV)情況。當電壓低于UV門限時,外部MOSFET保持關(guān)斷狀態(tài)。假如輸入電源電壓高于OV門限,則不允許MOSFET重新接通??梢圆捎帽硨Ρ矼OSFET來代替肖特基二極管以提供反向輸入保護,從而減少壓降和功率損失。一個停機引腳負責將停機期間的靜態(tài)電流減小至7μA以下。
設(shè)計要點
過壓故障
在過壓情況發(fā)生時,LT4363會通過控制MOSFET柵極電壓,使得MOSFET工作在可 變電阻區(qū),以保證輸出電壓采樣引腳FB上的電壓維持在1.275V。從而達到,將電壓嵌位在我們所設(shè)定的電壓上的目的。同時,如果過電壓現(xiàn)象持續(xù)存在,則定時器會控制MOSFET關(guān)閉。
過流故障
當出現(xiàn)短路或過流情況,LT4363會控制GATE引腳,以限制SNS和OUT引腳之間電流檢測電壓為50 mV。在輸出嚴重短路的情況下(一般指輸出電壓低于2V),電流檢測門限會由原來的50 mV降低至25mV,以降低MOSFET上的功率應(yīng)力。如果故障仍然持續(xù),則定時器會控制MOSFET關(guān)閉。
MOSFET的選型
LT4363通過驅(qū)動一個N溝道MOSFET來導(dǎo)電負載電流。MOSFET的重要參數(shù)是導(dǎo)通電阻RDS(ON),漏源極電壓的最大值V(BR)DSS、柵極閾值電壓V(BR)GS以及SOA。
V(BR)DSS漏源極電壓的最大值:
V(BR)DSS漏源極電壓的最大值必須高于最高電源電壓。如果在出現(xiàn)輸出短路接地或在過壓事件期間,MOSFET的源漏極會承受全部供電電壓。
V(BR)GS柵極驅(qū)動電壓:
對于VCC供電在9V以上的應(yīng)用,通用型的所需的柵極驅(qū)動電壓范圍在10V和16V之間;對于VCC供電在9V以下的應(yīng)用,N溝道MOSFET的柵極驅(qū)動電壓,不能低于4.5V。
MOSFET的SOA:
SOA(Safe OperaTIon Area)是所有MOSFET中的一個參數(shù),以圖標形式體現(xiàn)在規(guī)格書中。其中體現(xiàn)出相關(guān)聯(lián)的三個參數(shù)的關(guān)系:Vds、Id,以及時間T。以典型應(yīng)用的中的N-MOSFET:FDB33N25為例:
圖8?場效應(yīng)管FDB33N25 的SOA曲線
在選擇MOSFET的SOA時,必須考慮所有故障條件下的情況;
在正常工作中,溝道是完全開著的,所以損耗在MOSFET上的功率非常?。?/p>
在出現(xiàn)過壓或是過流故障時,GATE引腳就會開始控制MOSFET上DS兩端所承受的電壓或是流過MOSFET的電流。此時高電壓和大電流會同時存在于MOSFET當中,因此必須謹慎地依照SOA數(shù)據(jù)來確定故障定時器的設(shè)置。
五、結(jié)語
LT4363只是ADI眾多浪涌抑制控制器系列中的一款,在汽車、工業(yè)等復(fù)雜供電環(huán)境中,世健提供的ADI浪涌抑制器能夠幫助產(chǎn)品抵御惡劣的供電環(huán)境,讓產(chǎn)品具備對抗各種浪涌傷害的能力,為產(chǎn)品的可靠運行保駕護航。